The Mesodermal Expression of rolling stone (rost) Is Essential for Myoblast Fusion in Drosophila and Encodes a Potential Transmembrane Protein
نویسندگان
چکیده
In homozygous rolling stone embryos, the fusion of myoblasts to syncytial myotubes is diminished. Nevertheless, the visceral mesoderm, the heart mesoderm, and few somatic muscles are properly formed. Thus, we postulate a central role of rolling stone for the fusion process within the somatic mesoderm. We have cloned the rolling stone gene, and the deduced protein sequence is in accordance with a transmembrane protein, which agrees with the enrichment of Rost in the membrane fraction of Drosophila embryos. No homologous genes have been described so far. rolling stone is expressed in the embryonic nervous system and cells of the somatic mesoderm, most notable in muscle founder cells. To elucidate the function of rolling stone for myoblast fusion, we applied a knock-out strategy. The expression of an antisense rolling stone transcript specifically within the mesoderm of wild-type embryos results in fusion defects of myoblasts, proving that the rolling stone expression in the mesoderm is responsible for the rolling stone phenotype. We suggest that rolling stone is a member of a group of genes that are necessary for the fusion process during myogenesis.
منابع مشابه
Essential genes for myoblast fusion in Drosophila embryogenesis
In Drosophila, as in vertebrates, each muscle is a syncytium and arises from mesodermal cells by successive fusion. This requires cell-cell recognition, alignment, formation of prefusion complexes, followed by electron-dense plaques and membrane breakdown. Because muscle development in Drosophila is rapid and well-documented, it has been possible to identify several genes essential for fusion. ...
متن کاملFusion from myoblasts to myotubes is dependent on the rolling stone gene (rost) of Drosophila.
The development and differentiation of the body wall musculature in Drosophila are accompanied by changes in gene expression and cellular architecture. We isolated a Drosophila gene, termed rolling stone (rost), which, when mutated, specifically blocks the fusion of mononucleated cells to myotubes in the body wall musculature. beta 3 tubulin, which is an early marker for the onset of mesoderm d...
متن کاملDrosophila myoblast city Encodes a Conserved Protein That Is Essential for Myoblast Fusion, Dorsal Closure, and Cytoskeletal Organization
The Drosophila myoblast city (mbc) locus was previously identified on the basis of a defect in myoblast fusion (Rushton et al., 1995. Development [Camb.]. 121:1979-1988). We describe herein the isolation and characterization of the mbc gene. The mbc transcript and its encoded protein are expressed in a broad range of tissues, including somatic myoblasts, cardial cells, and visceral mesoderm. It...
متن کاملAntisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila.
Somatic muscle formation in Drosophila requires fusion of muscle founder cells with fusion-competent myoblasts. In a genetic screen for genes that control muscle development, we identified antisocial (ants), a gene that encodes an ankyrin repeat-, TPR repeat-, and RING finger-containing protein, required for myoblast fusion. In ants mutant embryos, founder cells and fusion-competent myoblasts a...
متن کاملThe Intracellular Domain of Dumbfounded Affects Myoblast Fusion Efficiency and Interacts with Rolling Pebbles and Loner
Drosophila body wall muscles are multinucleated syncytia formed by successive fusions between a founder myoblast and several fusion competent myoblasts. Initial fusion gives rise to a bi/trinucleate precursor followed by more fusion cycles forming a mature muscle. This process requires the functions of various molecules including the transmembrane myoblast attractants Dumbfounded (Duf) and its ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 138 شماره
صفحات -
تاریخ انتشار 1997